
which are valid on the same diameter, we arrive at the singular equation studied 

1 c s [ 6 (t) 
i 1 

Y-r t--t 0 
--h- &=F@o), -p<t<p 

t -pa/to 1 -0 (‘3.2) 

Borrowing the expression for 6(t) from (6.2) (with or without an appropriate solvability 
condition) and again returning (by means of continuation) to the initial contour L, we find 

the required density p(t). 
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STABILITY OF A GROWING VISCOELASTIC ROD SUBJECTED TO AGEING* 

V.D. POTAPOV 

The stability of a compressed growing rod of viscoelastic material that 

possesses the property of ageing /l/ is investigated. In conformity with 

the Chatayev definition of the stability of dynamic systems and the 

Lyapunov method described in /2/, stability conditions are obtained for a 

rod growing during a finite time interval, and in finite and semi-infinite 

time intervals. Some results of a numerical analysis of the behaviour 

of such a rod are presented in /3/. 

1. Variational formulation of the problem of the stability of a growing 
viscoelastic rod. We consider a rod that grows in both the longitudinal and transverse 

directions, where its transverse section possesses two axes of symmetry at each time. The law 

of variation in the rod length as well as the kinematics of its growth in the plane of the 

transverse section are considered given /l/, whereupon the time of material generation r* (P) 
can be determined in the neighbourhood of a point with coordinates p = {z, y, z} (the rod 
length is Z(0) at the initial instant). As the time tr elapses, the length, the cross-sectional 

area, and the moment of inertia of the rod remain unchanged and respectively equal to ZO,FO(x), 

Jo(s) (F,(s) # 8, Jo(r) # 8). A one-parameter conservative compressive load Q (t? r) acts on 

the rod, and causes the normal force N,, (t,s)= - fJN,(t,r) therein (p is the load parameter). 

Axial displacements &(t,z), determining the trajectory of the unperturbed motion, appear 

in the rod subjected to the load in the rectilinear equilibrium position. We assume that when 

there is no external load the rod axis has a small initial curvature au,,(s) in the .zy plane 

(a is a small parameter). In this case the rod receives additional displacement aur, alul under 

the effect of the load. We designate the rod motion to which the displacements u0 i- aur,awl 

correspond to perturbed, and e~r,r,zw, as perturbations. The rod curvature c&w0 is an external 

perturbation, with respect to which it is assumed that it is twice differentiable with respect 

to z, where the first and the second derivatives are square summable in the segment IO, 1 @)I, 
where t(t) is the rod length at the running time t. 

Definition. The unperturbed rod motion is called stable with respect to the perturbation 

*Prikl.Matem.Mekhan.,50,6,1012-1019,1986 
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awe for O<<t<m if for any number A > 0 there is a number S-=6(.4)> 0 such that for 
any initial curvature am0 satisfying the inequality 

a sup= Iwo (5) I<& z e IO, 1 (t)] 

the displacement perturbation awl satisfies the condition 

a supt,, ]m1(t,x) I<A,zElO* I@)) 

If the rod motion is investigated in a finite time interval. [O, fj and a critical value 
of the deflection jwl* is given, then in this case it is possible to speak'about the critical 
time t, by defining it as the time of first reaching the magnitude jw I* by the deflection 
I am I 

awkx Irulff, 4 I< IW I*, 
where 

o<t<t*, a sup, I ~1 (t*, 4 I = I 1u I*, 3 E to, z (t)r 

The rod is called stable in the interval [O, Tl if t, > T. 
We take the equation of state for an inhomogeneously ageing viscoelastic material in the 

uniaxial stress state in the form /4/ 

a(fP)=E(t--*@))e(t,P)- (1.1) 

where (I, e is the stress and strain in the growing rod, E(t) is the elastic instantaneous 
strain modulus, and R (t, r) is the relaxation kernel of the ageing viscoelastic material. 

We will use a modified hypothesis of plane sections /l, 3/ in determing the strain, in 
conformity with which 

8 (6 P) = Ae” 0. 4 + Ax (t, I) y 
A.+’ (t, z) = e” (t, .z) -en (r* (p), a$, Ax (t, LZ) = 

“I, % 4 - x (t” (P), x) 

(4.2) 

(so7 X are the axial strain and curvature of the additional rod curve). 
We represent the strain 8" in the form 

e0 = coo + aer" $ a2ezo 

Then 

e = Aso + a (AsI + Ax-y) + a2Aszo 

Considering the quasistatic formulation of the problem, we 
is the rod volume) /5/ 

0.3) 

introduce the functional (V(t) 

flea= E(t - r*(p))e*(t, p), eRe ==e(t,p) 1 R(t - r*(p),z - r* (p))e(z, p)dr 
r*(P) 

Taking (1.3) into account, we expand the functional 3 in powers of the parameter a: 

3 = 3. + a31 + a23, -t- . . . 
We will confine ourselves henceforth to the terms of this expansion that are written down. 
We vary the functional 3 in the displacements ar, w1 referred to the running time t 

(the displacement u. corresponding to the unperturbed motion is not varied). That the first 
variation of the functional .3 equals zero is its stationarity condition 
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Taking into account that the expressions (E - R)Ae,", (E - R).(Aelo+ Ax.@) define the 
stress CJ,, in unperturbed motion and the stress perturbation Ut, respectively, we obtain, after 
integration over the rod cross-sectional area F(t,x), 

Because of the rod equilibrium in unperturbed motion, the equality 63x= 0 is conserved. 
It then fol.lows from (1.4) that 

Because of the independence of the variations 6ut,&& we obtain two relations from (1.6). 
From one we find the perturbation of the rod axial displacement ~1 which, as can be shown, is 
identica1l.y zero, while the second relation has the form 

Here /l/ 

@J, 0, 4 is the reduced bending stiffness). 

2. Stability of a rod in an infinite time interval, 

Th~OB?Rl. If the following conditions are conserved 

ji~N*(t,x)===H* (5)+0, 2E fO,loJ 

l;m E(f)=Eo, t(L t,s)+J-O, sE[@ l(t)] 
t-w t 
ty\-&" L&z;iqf < RO(~,~)~~(~), 

and a function R,(&z) exists such that as T+m 

t 

then the growing rod is stable for TV 10,~) if the load parameter 8 satisfiestheinequality 

B < ?%% (1 - R&J. Here 4 is the minimal eigenvalue of the homogeneous boundary value problem 
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to which the equation 

0 0 

corresponds. 
We note that such a boundary value problem is selfadjoint 

and positive /6/. 

Here 

and its eigenvalues are real 

Proof f As the deflection variation 6wr in (1.7) we take the deflection wr itself. Then 

(1.7) can be represented as follows (we will henceforth omit the subscript 1 and denote the 
derivative with respect to x by a prime): 

l(t) t 

1 ~(1J,z)w"(t,.z)- 5 ~L(t,z,x)w"('F,x)dz]w"(t, x) - (2.2) 

o BN* (L x)[w(t,x) + ;:';&L! (t, I)} dz= 0 

We introduce the notation 

5 EoJo 64 w”* (6 4 dx = II W” W II*, Q (0 = ,z/I~, II W” (7) II 
4, 
5 
0 

Eo Jo (4 wona (4 dx = II Wo” (4 IV> II Wo” II = fzg~tt, II U’o” W II 

We represent (2.2) for the time t>tl as follows 

(2.3) 

1. 

S [EoJo (x) w”~ (t. x) - f3N* (x) w’* (t, x)] dx= 

‘i BN* (x) wo’ (x) w’ (t, x) dx + II + Zo + Zs 
0 

(2.4) 

z1=s” 5 --&L(t , T’, x) w” (T, x) dtw” (t, x) dx 
0 r**(x) 

Za= i j3 [N, (t, x) - N* (x)] [w’ (t; x) + wo’ (x)] w’ (t, x) dx 
0 

Z~=~[EoJo(x)-L(t,t,x)]w”z(t,x)dx 
0 

In conformity with conditions (2.1), a T = T(A) exists for any number A >0 such that 
for t> T 

~EoJo(x)-L(t.t,x)~=jEoJo(x)-~,~~~E(t-~)~s~)d~(~)~< 

AEoJo (x), IN* (x) - N, (6 x) I< AN* (x) 

Predeterminingw"(r, x) for O<z<zl*: w”(r,x)sO, we obtain the estimate 

II < fi Ro (t, r) Jo (x) w”(r, x) dzw” (t, x) dx + 

(ADi R/Q II W” W II Q 0) < (-4 + W-W II W” W II a (4 + 
ll W” W II Q (T) RolEo, 1s d A II W” (4 Ifa, 

1s d AfK’ II W” W II (II W” W II + II Wo” ll) 

Taking into account the relationship /6/ 

t EoJo (x) wq (x) dx > i’q i N* (x) w’* (x) dx 
0 0 

(2.5) 

we have in place of (2.4) 
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It can be shown that 
Let us consider 

write 

ll 1 (2.6) 

+-A)ilWi/l4+(T) 
the quantity Q(T) is bounded. 
the time interval tO,fl. On the basis of the theorem of the mean, we can 

l(t) 

S L (t, t, *)w*)(t, 2) l&z = Rl(k Sl) IIW" 0) lp 
tpt, 
S L (t, t, 2) El;;* (zfds = Ho@, t\o)l"d (t)p 0 

where 

L tt, 1. 4 
Hi (‘7 l)i) = EoJoo I xL=.il rli E [O* I tf)17 t = 0~1 

Taking the relationship (2.5) into account it follows from (2.2) that 

]l TV” (t) Il< Cl /I ‘vc’o” II $ c2 s&I* b) II W” b) II dr 
0 

(2.7) 

It is assumed here that @<h,(a) for any b~lO,tJ. 
Ifthe function R,(t, 2) has a weak singularity for t=% then it is first necessary to 

go over to an iteration series in the inequality (2.7) /7/, which is regular, starting with 
a certain number n. 

Applying the Gronwall-Bellman lemma, we find 

IIW"(1~II<C~UVl.."larp[c~~~~*(t~dr]~ f E ro, t11 
0 

The boundedness of the function Q(t) can be proved analogously for tl< f< 7’. 

Therefore 1 W"(t)lj< 11 WoaII m(t) where @ (t) is a certain bounded function. Consequently, 
we have from relationship (2.6) 

On the basis of the theorem of the mean we can write 

Taking account of inequality (2.5) we obtain 

iv* (21 0)) It UJ’ 0) iis Q EoJo (xc, (41 It w” 0) ll”& 
It follows from (2,8)-(2.101, that for 

fi < (1 - RJE,) hr 

the function w(t,s) has first and second derivatives square summable in the segment 
Setting the origin at the endpoint where the rod deflection w is zero, we write 

(2.9) 

(2.10) 

f2Al) 

to, lo1 l 

The theorem is proved. 



Remark. lo. If the growing rod is 
to Hooke's law a,= E,e,, then condition 
understood to be the minimal eigenvalue 
corresponds to equality 

reinforced where the reinforcement material is subject 
(2.11) remains valid even inthecase when h, is 
of the homogeneous boundary value problem that 

I. 
s [EcJo (z) + E,‘, (z)] w”’ (2) dz = L ‘s N* (5) w’n (5) dz 

0 0 
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Here Jo(z) is the reinforcement moment of inertia in the rod transverse section. 
2O. If the external load is multiparametric and such that 

then the condition of rod stability is written as follows 

where h, is the minimal eigenvalue of the homogeneous boundary value problem that corresponds 
to the equality 

1. h 

S &Jo (z) IO-' (2) dz = h S Ni* (5) w’n (5) dz 

0 0 

3O. If the material characteristics are invariant relative to the time origin, i.e., 
L, (6 z) = Eo - r (t - T), then for z>t, 

m 

&L (t, T, 5) = R (t - T) Jo (2). R = 
s 

R (0) de, 
ar(t-r) 

0 

R (t -z) = ao 

In this case the critical value of the load parameter is determined for the growing rod 
exactly as for an elastic rod with a extended elastic modulus 8, = E, - R. 

3. Stability of a growing rod in a finite time interval. The stability of 
a growing viscoelastic rod in a finite time interval 10, TJ can be investigated by using the 
relationship (2.7) from which estimates of the critical time t, or the critical values of 
the other parameters, particularly the values of the velocities characterizing the rod growth, 
etc., are obtained for given estimates oftheinitial curvature w,, and the ultimate deflection 

10*. 

As an illustration, we will examine a rod for which one end is rigidly clamped (for z = 0) 
and the other is free (for x = l(t)). The initial curvature of the rod axis is described by a 
parabola wO(z)=axa. The rod has a constant cross-section and is under its own weight. 
Growth of the rod occurs in the axial direction at an exponential velocity v(t)= voflt. 

We note that the normal force at the rod free end is free, however, this is not reflected 
in the final results. 

The material elastic modulus is constant, equal to Eo, while the relaxation kernel has 
the form /l/ 

R (t, t) = - & {o (7) [ 1 - e-V@-“]}. o(z) = CO + Aoc+ 

Under the assumptions made, the following equalities hold 

Relationship (2.7) 

An estimate of the 

Ht (6 rli) = 1, II W” (4 Ha = EJo II ur” 0) II’ 
II Wo” 0) II’ = &Jo II wo” 0) II’ = &Jo (2~ m * 

becomes 

magnitude of the rod deflection can be obtained in the norm II d w II 

l~‘(i,x)l=ISd(t,x)dxl~~,U(t,x)idx~~~/g(t)~ 
0 0 

I~(t,x)I=lS~‘(t,x)dxlgPig(t)~ (3.2) 
u 
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Using the relationships (3.1) and (3,2), an estimate can be found for the value of the 
critical time t,. Here 

RO (t, z) = bA, + (ye,, + ?A, - bA,) e-y@-Q 

The results of solving the problem in the form of the dependence of t, on the .parameter 

"0, found for values of the constants I(0) = 0, CdEo = 0.075, A./E, = 0.75, y = O.OZ.l/day, b= 0.005.i/day, 
1, = ~,/a = 50m, p = 0.2551,, LI = 4.1O'+m-1, are shown in the figure as a continuous curve that 
corresponds to the value of the ultimate deflection UI l ,equal to O.Olm (the time t, is measured 
in days, and u0 in m/day). The graph shows the substantial influence of the rod growth rate 
on the magnitude of the critical time. 

The dependece of W* on t, can be obtained on a more lucid form for 
which we write inequality (3.1) as follows 

i* 

I] @" (:)I< m (Q + 'p (f) s Eo*t~fI/~' (T)lldT 
0 

$I (t) = [1 - p?.z-l(jl - e-=f)S]-", @ (t) = 2 alo'$&-1 (1 - e~f]=cp (t), 
R,*(r) = YW, + &,I / E, 

Taking account of the monotonic change in the functions (p(t) and 
@ (0 as the time t increases, we have the following transcendental 
equation for the estimate of t,: 

w* = ld”‘a a, @*)(I - e-9”* exp It&J (t*) y (C, _t A,)/&1 (3.3) 

Expressing a in terms of u0 for a fixed value of w* we hence obtain a dependence between 

t* and the parameter u,, which is shown dashed in the figure. Comparison of the graphs 
confirms the closeness of the results that the relationships (3.1), (3.2) and (3.3) yield. 
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